O.P.Code: 23CE0114

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year II Semester Regular Examinations July/August-2025 HYDRAULICS & HYDRAULIC MACHINERY

(Civil Engineering)

	_	(Civil Engineering)			
T	Time: 3 Hours		Max.	Marks: 70	
		PART-A			
		(Answer all the Questions $10 \times 2 = 20$ Marks)			
	1 a	Define boundary layer thickness.	CO ₁	L2	2M
	b	Define laminar flow and what is the value of Reynolds number.	CO1	L1	2M
	c	State the conditions for most economical trapezoidal section.	CO ₂	L1	2M
	d	Define prismatic channel.	CO ₂	L1	2M
	e	List the methods to dissipate the energy of flowing water.	CO3	L2	2M
	f	Define specific energy.	CO ₃		2M
	g	State the principle behind impact of jet on vanes.	CO5		2M
	h	What is the purpose of draft tube?	CO5		2M
	i	Define cavitation.	CO6		2M
	i	State the purpose of priming.	CO6		2M
	J	PART-B	COU	LI	2111
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
	2	Derive an expression for laminar flow through circular pipes.	CO ₁	L2	10M
		OR			
	3 a	Explain Reynolds experiment with a neat sketch	CO1	L1	5M
	b	The viscosity of an oil of specific gravity 0.8 is measured by a capillary	CO ₁	L4	5M
		tube of diameter 40 mm. The difference of pressure head between two			
		points 1.2 m apart is 0.3 m of water. The weight of oil collected in a			
		measuring tank is 400 N in 100 seconds. Find the viscosity of oil.			
		UNIT-II			
	4 a	Classify various types of flow in channels and explain.	CO2	L2	5M
		A triangular gutter whose sides include an angle of 60 degrees conveys			5M
	D			L4	3111
		water at a uniform depth of 250 mm. If the discharge is 0.04 cumec,			
		determine the gradient of the trough. Take C = 52.			
	_	OR	003	T 4	73 A
	5 a	Derive an expression for velocity of flow through open channel using	CO ₂	L1	5M
	_	Chezy's equation.	~~-		
	b	Determine the most economical section of rectangular channel carrying		L5	5M
		water at the rate of 0.5 cumec, the bed slope of the channel being 1 in			
		2000. Take $C = 60$.			
		UNIT-III			
	6 a	Derive the relationship between specific energy, critical depth and critical	CO3	L2	5M
		velocity.			
	b	Water flows at a steady and uniform depth of 2 m in an open channel of	CO ₃	L4	5M
		rectangular cross section having base width equal to 5 m and laid at a			
		slope of 1 in 1000. It is desired to obtain critical flow in the channel by			
		providing a hump in the bed. Calculate the height of the hump. Consider			
		the value of Manning's rugosity coefficient $N = 0.02$ for the channel			
		surface.			
		OR			
	7	List various assumptions made in the analysis of hydraulic jump and	COA	12	10M
	,	establish the relationship for depth of jump before and after the hydraulic			TOTAT
		jump.			

		UNIT-IV			
8	a	Derive an expression for force exerted on a stationary flat plate held inclined to the jet.	CO5	L2	5M
	b	A jet of water strikes with a velocity of 35 m/s a flat plate inclined at 30	CO5	L4	5M
		degrees with the axis of the jet. If the cross sectional area of the jet is 25			
		sq cm, determine the force exerted by the jet on the plate, components of			
		the force in the direction normal to the jet and ratio in which the			
		discharge gets divided after striking the plate.			
		OR	~~-		
9	a	Explain the classifications of turbines.	CO ₅	Ll	5 M
	b	Explain construction and working of Pelton Wheel with a neat sketch.	CO ₅	L2	5M
		UNIT-V			
10	a	Sketch and explain component parts of a centrifugal pump	CO ₆	L1	5M
	b	A centrifugal pump is to discharge 0.118 cumec at a speed of 1450 rpm	CO ₆	L4	5M
		against a head of 25 m. The impeller diameter is 250 mm, its width at			
		outlet is 50 mm and manometric efficiency is 75%. Determine the vane			
		angle at the outer periphery of the impeller.			
		OR			
11	a	List different types of heads of a centrifugal pump.	CO ₆	L1	5M
	b	Classify losses and efficiencies of a centrifugal pump.	CO ₆	L1	5M
		*** END ***			

